ASSERT proposal for a FP6 project

Automated System and Software Engineering for Real-Time applications

Eric Conquet

ESA/ESTEC - TOS-EME

AADL Committee Meeting – Nashville
October 2003
In 1903, an empiric approach to build a flyable and controllable aircraft.

In 2003, a scientific approach to build a reliable and safe aircraft.

And in system and software engineering?
Rationale for ASSERT.

• An ESA “SW crisis” document reported in 2002 a number of issues at SW level for space applications:
 – Cost and schedule overruns.
 – SW issues not really understood at system level.
 – SW crisis is probably also a System crisis.
• How can we develop more complex systems with the current approach?
System and SW Engineering Today.

- Mostly an empiric approach:
 - *System and SW design are build from team experience and quality is unknown until the test phase.*
 - *Paper specification: How to verify properties and completeness?*
 - *Poor traceability: How to be sure that design is complete and consistent?*
 - *Manual coding and testing: How to reduce cost?*
- Poor reuse of best practices: How to benefit from already proven mechanisms?
What can be changed?

- From an empiric to a **scientific** approach in system and SW engineering: by introducing proof obligations at ALL steps (PBSE approach).
- From specific to **generic** solutions: define system families to build common architectures for cross-domains problems.
- From paper to **model**: use the AADL language to support all system design and verification activities.
- From individual to **team**: disseminate those best practices through an education and training program.
ASSERT: a pragmatic path to achieve an ambitious vision.

Scientific approach → Proof-based System Engineering → Necessary steps → Empiric approach → Test-based System Engineering

System tested at implementation level

System proven by design
From system families to generic architectures.

<table>
<thead>
<tr>
<th>System Family</th>
<th>Description</th>
</tr>
</thead>
</table>
| Safety oriented system | Life time in safety mode: 10 years
Interruption of service: 1 second
Error detection coverage: 100%
Full segregation
Ground intervention not allowed |
| Availability oriented system | Limited life time: few hours or days
Interruption of service: 10 ms
Error detection coverage: 100%
No survival mode at system level
Ground intervention is not possible |
| Reliability oriented system | Long life time: 15 years in orbit
Interruption of service: 1 minute
Error detection coverage: 90%
Survival mode at system level
Ground intervention always possible |
| Ground technology oriented system | Medium life time: 3 years
Interruption of service allowed
Error detection coverage: 90%
Switch payload to safe state when error
Ground intervention always required |
| Cost oriented system | Medium life time: 3 years
Interruption of service allowed
Error detection coverage: 80%
Robust survival mode at system level
Ground intervention always required |
The ASSERT project at a glance.

- Coordinated by ESA (Eric Conquet & Philippe David)
- 32 partners
- 10 countries
- Overall budget: 20.6 Meuros
- Requested EC funding: 11.6 M Euros
- Total effort: ~2000 man months (166 man years)
- Duration: 3 years (2004-2007)
ASSEET and AADL

- AADL to support the requirements capture phase (identify required properties)
- AADL to capture system families reference architectures
- AADL to define architecture building blocks (system design patterns)
- AADL to build complete system architectures by composing Building Blocks (proof of composition rules)
- AADL to automatically generate the complete system.
- AADL to smooth the transition from system to SW (integration of SW components modelled with formal languages)
ASSERT: 2 dimension organization

5 Clusters: Academic, SME’s, tool provider
Companies involved in ASSERT

- Agencies:
 - ESA, German Space Agency, ESI.
- System Primes:
 - Astrium-space(F+D), Alcatel(F), EADS-ST(F&D), EADS CRC(D), Alenia(I)
- Space companies:
 - CS- France, Dutchspace(NL), Terma(DK), Scisys(UK), Intecs(I)
- Aircraft companies:
 - Dassault(F), EADS-MBDA(F+D).
- Academic:
 - VERIMAG(F), Padoua University(I), LAAS(F), ENST-Paris(F), Technical University of Madrid(E), INRIA(F), ARCS(A), University of Valencia(E), University of Vienna(A), University of Zurich(CH).
- Quality, Process:
 - SYNSPACE(CH).
- Tool provider:
 - Esterel-Technologies(F), TNI-Valiosys(F), Axlog(F), BSSE(D)
Cooperation between ASSERT and the AADL committee

- Extensions to AADL: PBSE support, distribution, dependability, ...
- AADL tool support
- Transitions from system engineering to SW engineering.
- Applications of AADL to industrial cases.
- Definition of a SE process using AADL.
- Education and training program.