Ocarina, an AADL-to-X generator: status & work in progress

Jérôme Hugues, TELECOM ParisTech
Involved in AADL since 2004

Used AADL as part of our research activities on middleware and Distributed Real-Time and Embedded systems

Key idea: use AADL to configure and deploy applications
 - Use a compiler approach to generate support code for distribution, concurrency, buffer allocation and checks
 - vs. relying on a huge framework a-la CORBA

Open source projects:
 - Ocarina: toolbox for AADL
 - PolyORB-HI: C/RT-POSIX and Ada2005 runtimes for AADL
 - POK: Partitioned OS and runtime for AADL
Ocarina features
http://aadl.telecom-paristech.fr

- Ocarina is a stand-alone tool for processing AADL models
- Fully supports both AADLv1 and AADLv2
- Prototype support for the Behavioral Annex (up to 2.9)
- Code generation facilities target AADL runtimes
 - Ada HI integrity profiles, with Ada native and bare board runtimes
 - C POSIX or RTEMS, for RTOS & Embedded
 - User code can be C, C++, Ada, Esterel, Simulink, Lustre, SCADE
- Model to model transformations
 - WCET analysis of AADL runtime + user code: Bound-T for LEON
 - Model checking specifications using Colored or Timed Petri Nets
 - Constraint language to validate AADL model
Ocarina features (2/2)

- Ocarina proposes an API to build your own AADL tools
 - Like Ocarina itself, but also Cheddar (UBO), LabASSERT (ESA)
 - Parsers, printers, semantic checks, model transformation
 - Compiler-based approach, rather than model-to-text

Add-ons

- Emacs and vim modes
- Eclipse plug-in for integration with OSATE
Ocarina visibility

- Used in the IST-ASSERT (9/2004 -> 1/2008) project
 - Validated on industrial case studies
- Ocarina & AADL used jointly in ANR Flex-eWare and MOSIC
 - Evaluation of DRE models performance, code generation
 - In a CCM context, mapped onto AADL models
- Ocarina is part of the TopCased project
 - Part of the “model bus” philosophy of Eclipse
- Ocarina featured on http://libre.adacore.com
 - Open source projects hosted by AdaCore
 - Enhance visibility from the Ada community
 - Highlight benefits of AADL tools for the HI domain
Ocarina distributions

- **Ocarina 2.0 wavefront, daily snapshots**
 - Binaries of Ocarina (release 1.2 and nightly builds)
 - For GNU/Linux, Windows, Solaris, Mac OS X, FreeBSD
 - Documentation and examples (30+ available)
 - Scientific papers on the use of AADL
 - Teaching materials for Master degree
- **PolyORB-HI AADL runtimes**
 - Ada 2005 and C/POSIX
- **POK runtime**
 - For IMA systems, using time and space partitioning
PolyORB-HI/Ada

- Target Ada Ravenscar and High-Integrity runtimes
- Supports AADL semantics, v1 and v2
 - Need more tests to validate corner cases and extended use of AADL
- Based on the Ravenscar & HI Ada profiles
 - Meets stringent requirements from ESA
- Supports native, LEON2, ERC32 targets
 - With Ethernet or SpaceWire connections
 - Runtime can be configured to use other drivers

Validated in the context of IST-ASSERT with ESA
Ocarina’s AADL runtimes 2/2

PolyORB-HI/C

- Targets C/POSIX and C/RTEMS
 - Set of macros to support other RTOS
- Tested on multiple operating systems
 - Native, GNU/Linux
 - Restricted libc: GNU/Linux on Nintendo DS and Nokia 770
 - POSIX RTOS: RTEMS
- Tests demonstrated a limited subsystem of RT-POSIX & libc is enough to support AADL
- Performance comparable to the Ada version

Used in the ANR Flex-eWare project by Thales

- 500+ downloads of the MyCCM-HI toolchain
The ASSERT MPC V2 demonstrator (2007)

AADL Process as Partition
AADL Thread as Ada Task object
AADL Data as Ada Protected object

Concurrency view

Data_Sink: in event data port
Data_Source: out event data port

Read
Watch
Update

Physical view

LEON TSIM
SpaceWire

SC_1
1s Sender_Thread
Send

SC_2
100 ms Receiver_Thread
Update
Local Object

SC_3
100 ms Receiver_Thread
Update
Local Object

< 1MB/node, Including RTOS And drivers (60%)
The ASSERT ESA demonstrator (2008)

- Stood + Ocarina + ASN.1 tools demo
- Seamless integration of SDL, SCADE, Simulink, C, Ada, ASN.1 and AADL
- Using ASSERT philosophy: combining notations
- LwCCM is interesting for system designers
 - Comfortable with the OMG
- Map onto AADL for consolidation
- Generate code using Ocarina
- Uses AADLv2
AADL + Simulink or SCADE (2009)

- Binding AADL and functional blocks seamlessly
- Complementary to ASSERT, without need for interoperability
- Achieve zero coding, mapping between simulation space and execution space
AADL vs. manual coding (2008)

- **Example from the “Guide for the use of the Ada Ravenscar Profile in high integrity systems”**
 - Model a pump system, typical example for RT systems
 - AADL generated code vs. Ada hand-coded

- **Same functional model**
 - Both are analyzable with RMA and RTA
 - Shares same code quality enforced by Ada compiler

- **For LEON2 targets**
 - Penalty of 6% in memory size, equivalent WCET

- **Big improvement in analysis**

- **No coding**
Ocarina examples

- Examples from CMU/SEI, ASSERT, internal
- For Linux, LEON and ERC32 platforms
- Can be compiled for other native platforms

A set of educational material is available
- Build your own lab session using AADL
 - Then perform schedulability analysis, code generation, test
- For master degree, or in-house tutorials
Ocarina’s Eclipse plug-in

Better integration with OSATE

Status is alpha, mail to Ocarina-users@ if you are willing to test
Conclusion and Ongoing Work

- AADL proved it is interesting for our partners to build and generate code
 - IST-ASSERT, Flex-eWare, AdaCore, Thales, SAGEM, MBDA

- Ocarina is now available as both source and binaries packages
 - Use it, test it, report bugs to Ocarina’s mailing lists

- Some case studies are available, need more
 - Do not hesitate to send us models!