ASSERT

Automated proof-based System and Software Engineering for Real-Time systems

Eric Conquet
ESA/ESTEC
TEC-EME, Software Engineering and Standardization
Noordwijk, The Netherlands
• Related strategic objective: Embedded Systems
• Type of instrument: Integrated Project
• Number of partners: 29
• Project cost: 15 M€
• Amount of EC funding: 8.3 M€
 – Roughly 50% of the project cost (the rest is funded by the partners)
• Total duration of the project: 3 Years.
• Expected starting date: 1st September 2004.
• ESA is the coordinator of ASSERT.
• Consortium with major space and aircraft companies
 – Could have been bigger but limitation due to funding and manageability,
 – Could have been enlarged to include other industrial domains.
• Network of space companies within ASSERT
 – Will have a privileged access to some ASSERT results
• Synergy with other industrial domain
 – Sharing strategic view
 – Sharing methods and tools
 – Exchanging experience
 – Develop common products and technologies
ASSERT is structured into scientific clusters and Outcomes are assessed through two Pilot Projects.
ASSERT implements the harmonisation

Establish solid connection with EC.

Primes will have to enhance their practice on system design (system=data processing system)

SME’s will be able to invest on tools and building blocks

Research lab’s will implement the ESTEC ambitious technical strategy.

All companies and lab’s are connected through a network: ANET

Dissemination to industry, university, projects

Connection with external partners: Airbus, Peugeot (PSA), AADL committee.
Technical topics

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardization</td>
<td>PUS, SOIF</td>
<td>Standardisation of the Avionics</td>
<td>Standardisation of the new functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data System</td>
<td>Technical Network and Monitoring Board</td>
<td>SCOPE of ASSERT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture definition</td>
<td>System engineering to consolidate the categories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliability oriented data system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low cost oriented data system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Availability oriented data system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definition of System to Avionics process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definition of test strategy and test environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avionics reference bench (iron bird)</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Autonomy</td>
<td></td>
</tr>
<tr>
<td>Advanced Data System Functions</td>
<td>Model-based FDIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collaboration techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very High Integrated System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mass memory</td>
<td></td>
</tr>
<tr>
<td>High Reliability Distributed Data System</td>
<td>Highly integrated computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-Board Networking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of Data Handling SW Building Blocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of AOCS SW Building Blocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of FDIR Building Blocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground to space networking interface</td>
<td></td>
</tr>
<tr>
<td>Safety & High Availability Data System</td>
<td>Fault Tolerant Computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008-2012 critical phases, future launchers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of SW Building Blocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highly Available FDIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation, Certification</td>
<td></td>
</tr>
<tr>
<td>Low Cost Data System</td>
<td>COTS based spaceborne computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008 small sat according to opportunities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple & Robust FDIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of SW Building Blocks</td>
<td></td>
</tr>
<tr>
<td>Ground compatible OBC</td>
<td>New SPLC architecture and building blocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISS payloads NG</td>
<td></td>
</tr>
</tbody>
</table>

ASSERT in the ESA strategy
1. Technical University Vienna
2. ETH - Swiss Federal Institute of Technology
3. SynSpace
4. BSSE
5. EADS Corporate Research Center
6. EADS-Space Transportation (D)
7. Terma A/S
8. European Software Institute
9. SoftwCare
10. ALCATEL-Space
11. ASTRIMU (EADS) SAS
12. Axlog Ingenierie
13. CS – Systèmes d’Information
14. DASSAULT Aviation
15. DIT/UPM university of Madrid
16. MBDA France
17. EADS-Space Transportation (F)
18. Ecole Nationale Superieure des Télécommunications
19. ESTEREL Technologies
20. Institut National de Recherche en Informatique et Automatique
21. CNRS-LAAS&VERIMAG
22. TNI-Valiosys
23. ALENIA SPAZIO SpA
24. INTECS HRT
25. Univeristy of Padua
26. Dutch Space BV
27. European Space Agency – Coordinator
28. PROVER
29. SciScys
Technical overview
Software crisis: origin is in fact a lack in system engineering.
Current System design approach is exceedingly empirical.
It is unable to cope with increasing systems complexity.
Use of formal techniques at software level without any formal approach at system level is a nonsense.

Requirements:

- *System Architecture must be proven by construction*,
- *All new systems shall be built from a limited set of proven system families*.
- *A continuous proof based approach (from system requirements down to final implementation) must be used, replacing the test effort*
- *Industry has to be strongly involved in this new process definition and implementation in order to generate the expected ROI.*
Embedded Systems (EMS) Life Cycle Activities…. and Problems

Methodological Features
- Mastering the complexity once
- Proving the basics of the family once
- Full coverage of EMS development cycle
- Multi-domains and Dissemination are essential

Benefits
- Production of a new system from family
- Schedule and cost efficient
- Full confidence in proofs at family level
- Proofs are kept for each instance
Major technical breakthrough brought by PBSE (1/2)

• A mature System definition must be based on sound basis.
 – Mathematics for Aeronautic, Space, bridges, steel.
 – There is no such strong support for computer based systems.

• Computer systems are based on hidden mathematics for scheduling, resource, error, communication management.
 – We have to enforce this view in order to prove the system behaviour and properties.

• Having this basis defined will allow to industrialise the domain.
 – Building a bridge means applying already proved rules.
 – Building a computer based system will mean applying the family and the PBSE tailoring rules.
Major steps of the PBSE method

• Start with requirement capture: what are the desired properties and constraints,
• Create the specification,
• Look for an existing solution, or create a new one,
• Prove that the solution fulfills the requirements and give the Feasibility Conditions (conditions under which the proof is valid)
• If the solution is implemented correctly, it works by design.
Major technical breakthrough brought by PBSE (2/2)

- PBSE system design is the assembly of already proven solutions (algorithms). The assembly being demonstrated as composable and then proven.
 - Incremental development is then allowed as properties and interface are well defined.
- Flexibility in the design cycle is provided through the tailoring of the adopted solutions.
 - The FC proves that within these conditions the system is tailorable while keeping the proof valid.
- Whenever the FC does not fulfil the system needs, it is not too late to partly rerun the requirement capture.
 - It will allow early stopping of badly designed system before going to manufacturing.
Proof-Based System Engineering?
An example on the PHIDIAS project
(DGAC-Thomson Airsys-INRIA)

• Example of PBSE helpful in “early stopping”
• New ATC/ATM
• According to theoretical results: impossibility result ➔ No solution
• Savings? Avoid embark in endless design, implementation, testing phases (can’t work).
• Quantification? Total contract = 100 MFF
• Harmonisation shows that for what concern data systems: Earth Observation, Science and other systems can share the same platform.
• Design of new systems must no more be done according to market segments but according to their properties: dependability, reliability, …
• **ASSERT will develop** methods, process, and tools for continuous proof-based approach from early system specification down to final implementation for avionic systems.

• **ASSERT will develop and prove** architectures of system families so that instantiation of these families within a project can be done within 2 years time (instead of 4) with operational costs of the system divided by 5 to 10.

• **ASSERT outcomes:**
 – A system design process based on the use of system families,
 – Architectures and building blocks (Hardware and Software components),
 – supporting tools for the data processing function of critical Embedded Systems requiring fault tolerance, safety and hard real-time.
Available technologies (2010-2015) from all clusters

Future systems requirements: Space, Planes, Others

Strategy (2005-2010) from Primes, SME’s

Definition of Families

Per Family: Identification of the Reference Architecture and Building Blocks

Proof of properties on the architecture

Implementation of the Building Blocks

Integration & Verification of implementation on the Virtual System

Dissemination

Definition of the ASSERT Process

Assessment of ASSERT added value

A.NET: network of companies in the space and other domains
Needs for tool support in ASSERT

Refinement and Proofs by PBSE

System architecture In 3ADL

Properties extraction

AADL

Requirements from Pilot projects

PBSE tools

Application BB

CBB1

DDHRT Middleware

CBB2

Application BB

System proven by design and implementation Verified.

All code integrated At system level

Code integration

Model verified And code generated At BB level

Properties extraction

COTS

SCADE Model

MATLAB Model

Tailored BB

Reused BB

System proven by design and implementation Verified.

All code integrated At system level

Code integration

Model verified And code generated At BB level
• Interests from the ASSERT point of view:
 – AADL is one of the major stones of the ASSERT strategy,
 – Many ASSERT partners have expressed interest to work on or around AADL (language extensions, tool support, additional analysis).
 – ASSERT strategy is clearly linked to the use of common standards.
• Interest from the Committee perspective.
 – ASSERT will be a source of proposals for extending/improving AADL,
 – ASSERT will give the Committee the access to different case studies,
 – ASSERT is an entry point to a large consortium.
 – ASSERT will prototype tool support for AADL modelling, analysis, code generation, connection with other formalisms/tools.
 – ASSERT has access to a significant budget and manpower.
How to implement the ASSERT/AADL Committee link?

- Participation of ASSERT partners to the meetings:
 - Does not necessarily mean that all ASSERT partners have to be members of the committee!
- Organization of common international events:
 - May include tutorials and presentation of case studies.
- Participation of Committee members to the ASSERT advisory committee:
 - Experts can be appointed by the EC to be part of formal annual reviews of project results.
- Common lobbying actions on both side of the atlantic:
 - To get funding from the EC (opportunities to come)
 - To get funding from US institutions (NSF, …)
- Other ideas?