Automated proof-based System and Software Engineering for Real-Time systems

Dr. Eric Conquet
ESA/ESTEC
TEC-SWE, Software Engineering and Standardization
Noordwijk, The Netherlands

ASSERT genesis

- Software crisis: origin is in fact a lack in system engineering.
- Current System design approach is exceedingly empirical.
- It is unable to cope with increasing systems complexity.
- Use of formal techniques at software level without any formal approach at system level is a nonsense.
- Requirements:
 - System Architecture must be proven by construction,
 - All new systems shall be built from a limited set of proven system families.
 - A continuous proof based approach (from system requirements down to final implementation) must be used, replacing the test effort
 - Industry has to be strongly involved in this new process definition and implementation in order to generate the expected ROI.
ASSERT in facts and numbers.

- A project partially funded by the European Commission under the IST priority of the FP6.
- Targeted area in the IST: Embedded Systems
- Type of instrument: Integrated Project
- Number of partners: 29
- Project cost: 15 M€
- Amount of EC funding: 8.3 M€
 - Roughly 50% of the project cost (the rest is funded by the partners)
- Total duration of the project: 3 Years.
- Started on the 1st September 2004.

Assert in words.

- System = computer systems (e.g. on board computers).
- System and Software engineering = to solve the SW crisis by bridging the System/SW gap
- Proof-based System and Software engineering = System and SW designs will be proven before implementation
- Real-time systems = systems with high dependability constraints (on which we depend!)

ASSERT aims at reconciling system and software engineering through a continuous proof-based approach applicable to real-time systems.
Coordination: ESA
Clusters: to bring the scientific and technical expertise
Pilot Projects: to assess the project outcomes.

ASSERT list of partners

1. **ESA - Coordinator**
2. Technical University Vienna
3. ETH - Swiss Federal Institute of Technology
4. SynSpace
5. BSSE
6. EADS Corporate Research Center
7. EADS-Space Transportation (D)
8. EADS-Space Transportation (F)
9. Terma A/S
10. European Software Institute
11. SoftwCare
12. ALCATEL-Space
13. ASTRIMUM (EADS) SAS
14. Axlog Ingenierie
15. CS – Systèmes d’Information
16. DASSAULT Aviation
17. DIT/UPM university of Madrid
18. MBDA France
19. ENST – Ecole Nationale Superieure des Telecommunications
20. ESTEREL Technologies
21. INRIA - Institut National de Recherche en Informatique et Automatique
22. CNRS - LAAS & VERIMAG
23. TNI-Valiosys
24. ALENIASPAZIO Spa
25. INTECS HRT
26. University of Padua
27. Dutch Space BV
28. PROVER
29. SciScys
Future systems requirements: Space, Planes, Others

Definition of Families

Proof of properties on the architecture

Implementation of the Building Blocks

Integration & Verification of implementation on the Virtual System

Definition of the ASSERT Process

Assessment of ASSERT added value

A.NET: network of companies in the space and other domains

Needs for tool support in ASSERT

Requirements from Pilot projects

PBSE tools

System proven by design and implementation

Verified.

All code integrated

At system level

Code integration

Model verified

And code generated

At BB level

AADL

Application BB

DDHRT Middleware

CBB2

Application BB

COTS

SCADE Model

MATLAB Model

Tailored BB

Reused BB
ASSERT after 1 year: weaknesses?

• Yes, some!
• Technical Integration is lagging:
 ▪ Size and heterogeneity of the consortium do not help
 ▪ The first year was used to open all technological boxes
• The project has been victim of the “wait for being better” syndrome.
 ▪ A good idea could be replaced by a better one, one of these days!
 ▪ The ambitious vision has pushed partners to propose new solutions, not always mature.
 ▪ This syndrome has delayed the production of demonstrable results.
• Communication to the outside world has to be improved:
 ▪ Make the project googable!
 ▪ Attract people from the outside world to build the A.net.

ASSERT after 1 year: major achievements

• The project has passed the first review without big damages,
• The PBSE requirement capture approach has finally convinced industrial partners:
 ▪ A separation between functional and non-functional properties at system level was appreciated.
• A common understanding of the ASSERT process has emerged:
 ▪ The work made by the Process and Standardisation cluster to capture the process is impressive
• The whole project has now a clear vision on how to reach its ambitious objectives.
A new start for ASSERT.

- After the review, the project is working on the implementation plan for the next period.
- This period will be the time of:
 - Production of demonstrable results ("Put your hands on the real things!")
 - Communication and dissemination to real space projects,
 - Dissemination to other industrial domains through A.Net.
 - More links between ASSERT and other initiatives (TOPCASED, MODELWARE), or other international committees (AADL, OMG, SAE)
- Stay tuned and contact us!